124 research outputs found

    Graphs of Classroom Networks

    Get PDF
    In this work, we use the Havel-Hakimi algorithm to visualize data collected from students to investigate classroom networks. The Havel-Hakimi algorithm uses a recursive method to create a simple graph from a graphical degree sequence. In this case, the degree sequence is a representation of the students in a classroom, and we use the number of peers with whom a student studied or collaborated to determine the degree of each. We expand upon the Havel-Hakimi algorithm by coding a program in MATLAB that generates random graphs with the same degree sequence. Then, we run another algorithm to find the isomorphism classes within the randomly generated graphs. Once we have reduced the problem to the isomorphism classes, we can then choose a graph we think most accurately describes the classroom network. At the end of this work, we will make a note on the rainbow connection number in oriented graphs with diameter 2

    Note on Rainbow Connection in Oriented Graphs with Diameter 2

    Get PDF
    In this note, we provide a sharp upper bound on the rainbow connection number of tournaments of diameter 22. For a tournament TT of diameter 22, we show 2≤rc→(T)≤32 \leq \overrightarrow{rc}(T) \leq 3. Furthermore, we provide a general upper bound on the rainbow kk-connection number of tournaments as a simple example of the probabilistic method. Finally, we show that an edge-colored tournament of kthk^{th} diameter 22 has rainbow kk-connection number at most approximately k2k^{2}

    Note on Rainbow Connection in Oriented Graphs with Diameter 2

    Get PDF
    In this note, we provide a sharp upper bound on the rainbow connection number of tournaments of diameter 22. For a tournament TT of diameter 22, we show 2≤rc→(T)≤32 \leq \overrightarrow{rc}(T) \leq 3. Furthermore, we provide a general upper bound on the rainbow kk-connection number of tournaments as a simple example of the probabilistic method. Finally, we show that an edge-colored tournament of kthk^{th} diameter 22 has rainbow kk-connection number at most approximately k2k^{2}

    Effects of Caffeinated and Non-Caffeinated Gum on Premotor, Motor, and Overall Reaction Time

    Full text link
    Chewing gum and caffeine when used independently and concurrently increase neural activity ultimately improving reaction time but less is known about how caffeinated gum influences distinct phases of the reaction time response. Physically active college females (n=14) completed a 60-second reaction time test on a visuomotor board under the following counterbalanced conditions: 1) Baseline, 2) Non-caffeinated gum, 3) Caffeinated gum (300 mg caffeine). Point of application #1: Chewing gum improved premotor reaction time compared to baseline, but caffeine did not provide additional benefit. Point of application #2: Neither non-caffeinated nor caffeinated gum improved motor reaction times from baseline. Point of application #3: Chewing gum improved overall reaction time compared to baseline, but caffeine did not provide additional benefit. Keywords: Chewing, Visuomotor, Visual processin

    Trajectory of Substance Use Disorders and Collegiate Recovery in Emerging Adults

    Get PDF
    Abstract Collegiate Recovery Programs (CRPs) provide services to support emerging adults achieve academic success, while maintaining substance use disorder recovery. College and university campuses can often be considered abstinence-hostile environments, giving rise to the need of support services for students in recovery. A nationwide survey to understand the efficacy of services provided by CRPs was conducted to assess the demographics and academic profiles of students involved with CRPs. Co-occurring disorders including mental health issues, criminal histories, utilizations of recovery services and 12-step groups, and work histories of students were also assessed. CRPs can provide services and an environment to students that increase recovery capital domains. Recovery capital domains such as spirituality, health and wellness, academics, critical thinking and discernment, personal achievement, and service opportunities may be related to metrics of academic success such as grade point average. However, measuring success for those in substance use disorder recovery through academics metrics alone could present a barrier to improving recovery services. Assessing the effectiveness of CRP programs through the lens of recovery capital offers a strengths-based, wholistic approach to improving services for students in recovery. Future directions include administering comprehensive measurements for recovery success, in addition to academic metrics, for students that are members of CRP. Keywords: Substance Use Recovery; Emerging Adults; Collegiate Recovery Program

    Co-creation of a complex, multicomponent rehabilitation intervention and feasibility trial protocol for the PostUraL tachycardia Syndrome Exercise (PULSE) study

    Get PDF
    Background: There is a dearth of research to support the treatment of people with postural tachycardia syndrome (PoTS). Despite expert consensus suggesting exercise is recommended for this patient group, there are no randomised control trials examining this rigorously. The aim was to co-create a feasibility trial protocol and a rehabilitation intervention for people living with PoTS. // Methods: The intervention and feasibility trial design were co-created as part of the PostUraL tachycardia Syndrome Exercise (PULSE) study. We used the ‘three co’s framework’ of co-define, co-design and co-refine. Recruitment included key national charities and National Health Service Trusts treating people living with PoTS in the UK. Eighteen patient and public involvement members attended the co-define session, and 16 co-creators with a mix of expertise attended the subsequent co-design and co-refine sessions. Seven intervention practitioners were trained in the rehabilitation intervention, providing feedback for further co-refinement. // Results: The final co-created intervention comprises online physical activity, and lifestyle and behaviour change support sessions. It is based on functional movement activities using a patient-centred approach tailored to individual needs. Physical activity intensity is guided by individuals’ perception of effort rather than by objective measures. Recumbent bikes are provided for home use. Patients deemed randomisation to be acceptable because research in this area was considered important. // Conclusions: An innovative approach was used to co-create the PULSE intervention and feasibility trial protocol to meet the evidence-based and logistical needs of people living with PoTS, clinicians, service deliverers, third-sector organisations, academics and funders. This can be used as a successful example and template for future research internationally. People living with PoTS were recognised as experts and involved in every aspect of conceptualisation, design and refinement. This complex rehabilitation intervention is currently being tested in a randomised feasibility trial comparing the PULSE intervention with best-practice usual care for people living with PoTS. // Trial registration: ISRCTN45323485 was registered on April 7, 2020

    Model-observation and reanalyses comparison at key locations for heat transport to the Arctic: Assessment of key lower latitude influences on the Arctic and their simulation

    Get PDF
    Blue-Action Work Package 2 (WP2) focuses on lower latitude drivers of Arctic change, with a focus on the influence of the Atlantic Ocean and atmosphere on the Arctic. In particular, warm water travels from the Atlantic, across the Greenland-Scotland ridge, through the Norwegian Sea towards the Arctic. A large proportion of the heat transported northwards by the ocean is released to the atmosphere and carried eastward towards Europe by the prevailing westerly winds. This is an important contribution to northwestern Europe's mild climate. The remaining heat travels north into the Arctic. Variations in the amount of heat transported into the Arctic will influence the long term climate of the Northern Hemisphere. Here we assess how well the state of the art coupled climate models estimate this northwards transport of heat in the ocean, and how the atmospheric heat transport varies with changes in the ocean heat transport. We seek to improve the ocean monitoring systems that are in place by introducing measurements from ocean gliders, Argo floats and satellites. These state of the art computer simulations are evaluated by comparison with key trans-Atlantic observations. In addition to the coupled models ‘ocean-only’ evaluations are made. In general the coupled model simulations have too much heat going into the Arctic region and the transports have too much variability. The models generally reproduce the variability of the Atlantic Meridional Ocean Circulation (AMOC) well. All models in this study have a too strong southwards transport of freshwater at 26°N in the North Atlantic, but the divergence between 26°N and Bering Straits is generally reproduced really well in all the models. Altimetry from satellites have been used to reconstruct the ocean circulation 26°N in the Atlantic, over the Greenland Scotland Ridge and alongside ship based observations along the GO-SHIP OVIDE Section. Although it is still a challenge to estimate the ocean circulation at 26°N without using the RAPID 26°N array, satellites can be used to reconstruct the longer term ocean signal. The OSNAP project measures the oceanic transport of heat across a section which stretches from Canada to the UK, via Greenland. The project has used ocean gliders to great success to measure the transport on the eastern side of the array. Every 10 days up to 4000 Argo floats measure temperature and salinity in the top 2000m of the ocean, away from ocean boundaries, and report back the measurements via satellite. These data are employed at 26°N in the Atlantic to enable the calculation of the heat and freshwater transports. As explained above, both ocean and atmosphere carry vast amounts of heat poleward in the Atlantic. In the long term average the Atlantic ocean releases large amounts of heat to the atmosphere between the subtropical and subpolar regions, heat which is then carried by the atmosphere to western Europe and the Arctic. On shorter timescales, interannual to decadal, the amounts of heat carried by ocean and atmosphere vary considerably. An important question is whether the total amount of heat transported, atmosphere plus ocean, remains roughly constant, whether significant amounts of heat are gained or lost from space and how the relative amount transported by the atmosphere and ocean change with time. This is an important distinction because the same amount of anomalous heat transport will have very different effects depending on whether it is transported by ocean or the atmosphere. For example the effects on Arctic sea ice will depend very much on whether the surface of the ice experiences anomalous warming by the atmosphere versus the base of the ice experiencing anomalous warming from the ocean. In Blue-Action we investigated the relationship between atmospheric and oceanic heat transports at key locations corresponding to the positions of observational arrays (RAPID at 26°N, OSNAP at ~55N, and the Denmark Strait, Iceland-Scotland Ridge and Davis Strait at ~67N) in a number of cutting edge high resolution coupled ocean-atmosphere simulations. We split the analysis into two different timescales, interannual to decadal (1-10 years) and multidecadal (greater than 10 years). In the 1-10 year case, the relationship between ocean and atmosphere transports is complex, but a robust result is that although there is little local correlation between oceanic and atmospheric heat transports, Correlations do occur at different latitudes. Thus increased oceanic heat transport at 26°N is accompanied by reduced heat transport at ~50N and a longitudinal shift in the location of atmospheric flow of heat into the Arctic. Conversely, on longer timescales, there appears to be a much stronger local compensation between oceanic and atmospheric heat transport i.e. Bjerknes compensation

    Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists

    Get PDF
    Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation
    • …
    corecore